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Abstract

In this paper, closed-form expressions for the mobility of the circumferential modes in an infinite in-
vacuo thin-walled pipe are derived in terms of the axial wave receptances for each mode. These expressions
are valid below the ring frequency. By using simplified expressions for the wavenumbers, low-frequency
approximations for the point and transfer mobilities are also derived. These new mobility expressions are
validated experimentally, and are used to examine the dynamic behaviour of an in-vacuo pipe.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

A convenient way to characterise the dynamic behaviour of shell structures, such as rings and
pipes is by their point and transfer mobilities. For a ring, these are given in Ref. [1]. Because of
different analysis approaches, the literature for pipes is split into two categories; that for finite and
for infinite pipes. For finite pipes, the analysis is usually based on modal decomposition in both
the circumferential and axial directions [2–4]. The analysis of infinite pipes generally employs a
wave approach in the axial direction together with modal decomposition in the circumferential
direction. Several researchers have performed such analyses for in vacuo [5,6], and fluid-filled
pipes [7–10]. The main difference between these two situations is the number of axial waves
that can exist for each circumferential mode. In in vacuo pipes, there are eight structural
axial waves for each circumferential mode, whereas in fluid-filled pipes there are fluid waves in
addition.

To obtain the mobilities of infinite pipes, most researchers have used the Fourier transform to
transform the equations of motion into the wavenumber domain. They solve the equations using
the method of residues [11], and then use the inverse Fourier transform back to the spatial
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domain. While this approach has mathematical elegance, it can mask some of the physics.
Recently, F!egeant has used a perturbation method to determine the point mobility for
axisymmetrically excited infinite pipes [12].

In this paper, an alternative approach is adopted to derive point and transfer mobilities for an
in vacuo infinite pipe using Hooke’s and Newton’s laws and eight boundary conditions at the
excitation point. The mobilities are decomposed into circumferential modes, and each mode is
decomposed into eight axial waves, four of which are left-going and four of which are right-going.
This approach enables expressions for each of the wave amplitudes to be derived for a harmonic
radial point force, and by summing these wave expressions for the modal amplitudes can also be
derived, which in turn, can be summed to give the total mobility. Once these expressions are
established, they are simplified for low-frequency behaviour using wavenumber expressions
derived by the authors in Ref. [13] to compare the dynamics of a pipe with that of simple
structures such as a membrane and a beam. By decomposing the response of an infinite
pipe in terms of waves, it is possible to determine the dominant waves for each circumferential
mode at each frequency for both the point and transfer mobilities, thus facilitating physical
insight.

To validate the expressions derived in this paper they are compared with measurements taken
on a PVC pipe fitted with anechoic terminations at each end.

2. Derivation of mobility expressions

The co-ordinate system for an infinite in vacuo pipe of mid-surface radius a and wall thickness h
is shown in Fig. 1(a), where w; u and u are the radial, tangential and axial pipe displacements,
respectively; y is the azimuthal angle and f is a reference angle clockwise from the vertical.
Because of the closure of the pipe in the circumferential direction, the mode shapes in this
direction take the form of sine or cosine functions. The first four modes are illustrated in Fig. 1(b),
where n denotes the modal order, which conventionally starts at n ¼ 0; n also denotes the integer
number of circumferential wavelengths that fit into the circumference of the pipe at the cut-on
frequency of the nth mode. For each mode, eight axial waves can potentially exist at any
frequency, four are right-going and four are left-going. The characteristics of these waves have
been described by the authors in Ref. [13].

To investigate the dynamic behaviour of the pipe, when it is excited by a radial harmonic point
force of amplitude F0; a small element is considered. A free-body diagram depicting the forces and
moments acting on the pipe element is shown in Fig. 2. Summing the resultant radial forces
(expressed in units of force per unit mid-surface length of the pipe) and applying Newton’s second
law, gives [3]

�Ny þ
@Qs

@s
þ

@Qy

@y
� rah

@2w

@t2
¼

F0

a
dðsÞdðy� fÞe�jot; ð1Þ

where r is the density of the pipe, s ¼ x=a is the non-dimensional axial distance along the pipe, d is
the delta function, Ny is the in-plane circumferential force, Qs ¼ ð1=aÞð@Ms=@s þ @Mys=@yÞ is the
axial transverse shear force, Qy ¼ ð1=aÞð@My=@yþ @Msy=@sÞ is the circumferential transverse
shear force, Ms and My are the axial and circumferential bending moments, and Msy and Mys are

M.J. Brennan, W. Variyart / Journal of Sound and Vibration 260 (2003) 329–348330



the twisting moments. Integrating Eq. (1) in the axial direction from �A to A; where A tends to
zero gives

Vs s¼0j ¼
1

a
F0dðy� fÞ; ð2Þ

where Vs ¼ ðQs þ ð1=aÞ@Msy=@yÞ is called the effective transverse shear force. Since dðy� fÞ ¼
ð1=2pÞ

P
N

n¼0 en cos½nðy� fÞ� where n is the circumferential mode number, and en ¼ 1 for n=0 and
en ¼ 2 for nX1 [14], the term on the right-hand side of Eq. (2) is the generalized force for any
angle, y: If the pipe is split at the excitation position, s ¼ 0; the resultant forces and moments react
at the edges of the split pipe as shown in Fig. 3. For the pipe section to the right of the excitation
force, the work done by the external force, F0wþ=2; is equal to that by the internal force, which is
equal to the external force for the left-hand pipe section. Note that superscripts � and + denote
variables for the left and right sections of the pipe, respectively. Equating the work done by the
internal forces for both sections of the pipe from angle y1 to y2 gives [3]Z y2

y1

ðNþ
s uþ � N�

s u�Þ þ ðTþ
syu

þ � T�
syu

�Þ þ ðVþ
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@s
� M�
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@w�

@s

� �� �
a dy

� ðMþ
syw

þ � M�
syw

�Þjy2

y1
¼ 0; ð3Þ

where Ns is the normal axial in-plane force, Tþ
sy ¼ Nþ

sy þ ð1=aÞMþ
sy is called the effective in-plane

shear force and Nsy is the in-plane shear force. Eq. (3) is satisfied if the integral and the second
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Fig. 1. Cylindrical co-ordinate system and mode shapes of a pipe.

M.J. Brennan, W. Variyart / Journal of Sound and Vibration 260 (2003) 329–348 331



term are both zero, which leads to the following boundary conditions at s ¼ 0:

Nþ
s ¼ N�

s ; ð4aÞ

Tþ
sy ¼ T�

sy; ð4bÞ

Vþ
s ¼ �V�

s ; ð4cÞ

Mþ
s ¼ M�

s : ð4dÞ

For continuity of motion, the other boundary conditions are

uþ ¼ u�; ð5aÞ

uþ ¼ u�; ð5bÞ

wþ ¼ w�; ð5cÞ

@wþ

@s
¼

@w�

@s
: ð5dÞ
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Fig. 2. Notation and co-ordinate system for an element of a pipe.
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Fig. 3. Notation and co-ordinate system for two connecting pipe elements. (a) force, (b) moment.
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Using Fl .ugge’s shell theory [15,16], the forces and moments in Eq. (4) may be written in terms of
displacements as

Nþ
s ¼

K

a

@uþ

@s
þ n

@uþ

@y
þ n� b2 @

2

@s2

� �
wþ

� �
; ð6aÞ

Tþ
sy ¼

ð1 � nÞK
2a

@uþ

@y
þ ð1 þ 3b2Þ
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@s
� 3b2@

2wþ

@s@y

� �
; ð6bÞ
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D
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D
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@s
þ n

@uþ

@y
�

@2

@s2
þ n

@2

@y2

� �
wþ

� �
; ð6dÞ

where K ¼ Eh=ð1 � n2Þ is the membrane stiffness, D ¼ Eh3=12ð1 � n2Þ is the bending stiffness,
b ¼ h=a

ffiffiffiffiffi
12

p
; and E and n are Young’s modulus and the Poisson ratio of the pipe, respectively.

Since the boundary conditions at the edges of the split pipe involve displacements in the axial,
circumferential and radial directions, the relationships between them need to be determined,
before their amplitudes can be established. The displacements of an infinite pipe in the positive
direction are given by [13]

uþðs; y; tÞ ¼
XN
n¼0

X4

b¼1

%%Unb cos½nðy� fÞ�ejð #knbs�p=2�otÞ; ð7aÞ

uþðs; y; tÞ ¼
XN
n¼0

X4

b¼1

%%Vnb sin½nðy� fÞ�ejð #knbs�otÞ; ð7bÞ

wþðs; y; tÞ ¼
XN
n¼0

X4

b¼1

%%Wnb cos½nðy� fÞ�ejð #knbs�otÞ; ð7cÞ

where j ¼
ffiffiffiffiffiffiffi
�1

p
; #knb is the non-dimensional axial wavenumber (the axial wavenumber multiplied

by the radius of the pipe), and %%Unb; %%Vnb; %%Wnb are the axial, circumferential, and radial amplitudes
for the bth wave of the nth circumferential mode of the pipe, respectively. The axial and tangential
motions can be found in terms of the radial motion by [15,16]

L11L12

L21L22

" #
%%Unb

%%Vnb

" #
¼ �

L13

L23

" #
%%Wnb; ð8Þ

where

L11 ¼ #k2
nb þ

ð1 � nÞ
2

ð1 þ b2Þn2 � O2; L12 ¼
ð1 þ nÞ

2
n #knb; L13 ¼ n #kn þ b2 #k3

n �
ð1 � nÞ

2
b2n2 #knb;

L21 ¼ L12; L22 ¼
ð1 � nÞ

2
ð1 þ 3b2Þ #k2

nb þ n2 � O2; L23 ¼ n þ
ð3 � nÞ

2
b2n #k2

nb;
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O ¼ o=or is the frequency normalised to the ring frequency, which is given by or ¼
1=a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=rð1 � n2Þ

p
. Rearranging Eq. (8) gives

%%Unb ¼ anb
%%Wnb ð9aÞ

and

%%Vnb ¼ cnb
%%Wnb; ð9bÞ

where

anb ¼
L12L23 � L22L13

L11L22 � L12L21

� �
nb

ð9cÞ

and

cnb ¼
L21L13 � L11L23

L11L22 � L12L21

� �
nb

ð9dÞ

Omitting the term e�jot for simplification, the set of the boundary conditions at s ¼ 0 can be
rewritten as a function of the radial motion by substituting the displacements given in Eq. (7) and
their relationships obtained from Eq. (9a) and (9b) into Eq. (6) for the resultant forces and
moments, and into Eq. (5) for continuity of motion. For a particular mode n this gives

ðNþ
s Þn ¼

K

a

X4

b¼1

ZN;nb
%%Wnb cos½nðy� fÞ�; ðTþ

syÞn ¼ j
ð1 � nÞK

2a

X4

b¼1

ZT ;nb
%%Wnb sin½nðy� fÞ�;

ðVþ
s Þn ¼ j

D

a3

X4

b¼1

ZV ;nb
%%Wnb cos½nðy� fÞ�; ðMþ

s Þn ¼
D

a2

X4

b¼1

ZM;nb
%%Wnb cos½nðy� fÞ�;

Uþ
n ðs ¼ 0; yÞ ¼ �j

X4

b¼1

anb
%%Wnb cos½nðy� fÞ�; Vþ

n ðs ¼ 0; yÞ ¼
X4

b¼1

cnb
%%Wnb sin½nðy� fÞ�;

Wþ
n ðs ¼ 0; yÞ ¼

X4

b¼1

%%Wnb cos½nðy� fÞ�;
qWþ

n ðs ¼ 0; yÞ
qs

¼ j
X4

b¼1

#knb
%%Wnb cos½nðy� fÞ�; ð10Þ

where, Uþ
n ;Vþ

n ;Wþ
n are the axial, circumferential and radial displacements of the nth

circumferential mode, respectively, and the Z’s are given by

ZN;nb ¼ ½ #knbanb þ nncnb þ b2 #k2
nb þ n�; ð11aÞ

ZT ;nb ¼ ½nanb þ ð1 þ 3b2Þ #knbcnb þ 3b2n #knb�; ð11bÞ

ZM ;nb ¼ ½ #knbanb þ nncnb þ #k2
nb þ nn2�; ð11cÞ

ZV ;nb ¼ #k2
nb �

1 � n
2

� �
n2

� �
anb þ

3 � n
2

� �
n #knbcnb þ #knbð #k2

nb þ ð2 � nÞn2Þ
� �

: ð11dÞ

The relationships between the radial displacement amplitudes in the positive and negative
directions are determined by applying the boundary conditions at the edges of the split pipe

M.J. Brennan, W. Variyart / Journal of Sound and Vibration 260 (2003) 329–348334



to give

ðNþ
s Þn ¼ðN�

s Þn; ðVþ
s Þn ¼ �ðV�

s Þn; ðMþ
s Þn ¼ ðM�

s Þn and ðTþ
syÞn ¼ ðTþ

syÞn ¼ 0;

Vn ¼ Vþ
n ¼ V�

n ; Wn ¼ Wþ
n ¼ W�

n ; Un ¼ Uþ
n ¼ U�

n ¼ 0

and
@Wn

@s
¼

@Wþ
n

@s
¼

@W�
n

@s
¼ 0: ð12Þ

Since ðTþ
syÞn ¼ 0; with zero slope and no axial displacement it implies that at the point of excitation

there is no twist,

@Vn

@s
¼

@Vþ
n

@s
¼

@V�
n

@s
¼ 0: ð13Þ

From the conditions, Un ¼ 0; @Wn=@s ¼ 0; @Vn=@s ¼ 0; the effective transverse shear force, Vs;
given in Eq. (6c) becomes

Vþ
s ¼

D

a3

@2Un

@s2
�

@3Wn

@s3

� �
¼ j

D

a3

XN
n¼0

X4

b¼1

ð #k2
nbanb þ #k3

nbÞ
%%Wnb cos½nðy� fÞ�: ð14Þ

Thus, the wave amplitudes can easily be determined by using Eq. (2), in which half of the
excitation force is applied to the right-hand section of the pipe as follows:

Vþ
s s¼0j ¼

1

2a
F0dðy� fÞ: ð15Þ

Substituting for Vþ
s from Eq. (14) and for dðy� fÞ ¼ ð1=2pÞ

P
N

n¼0 en cos½nðy� fÞ� into Eq. (15)
yields the relationship between the radial amplitudes of the waves and the excitation force for a
particular mode

X4

b¼1

ð #k2
nbanb þ #k3

nbÞ
%%Wnb ¼ �j

a2

4pD
Foen: ð16Þ

The wave amplitudes can be determined by applying the boundary conditions at s ¼ 0; which are
Un ¼ 0; @Wn=@s ¼ 0; ð1=nÞ@Vn=@s ¼ 0; and by using force equilibrium, Vþ

s js¼0 ¼ ð1=2aÞF0d
ðy� fÞ: By expressing these conditions in terms of the radial displacement, which are given in
Eq. (10) and (16) yields the matrix equation

an1 an2 an3 an4

#kn1
#kn2

#kn3
#kn4

#kn1cn1

n

#kn2cn2

n

#kn3cn3

n

#kn4cn4

n
#k2
n1an1 þ #k3

n1
#k2
n2an2 þ #k3

n2
#k2
n3an3 þ #k3

n3
#k2
n4an4 þ #k3

n4

2
6666664

3
7777775

%%Wn1

%%Wn2

%%Wn3

%%Wn4

2
666664

3
777775 ¼

0

0

0

�j
ena2F0

4pD

2
666664

3
777775: ð17Þ

Substituting for anb and cnb from Eqs. (9c) and (9d) respectively yields the wave receptances (wave
amplitude/unit force) for the nth circumferential mode

Rn1 ¼
�jena2ðL11L22 � L12L21Þn1

2pDð1 � nÞð1 þ 3b2Þð1 � b2Þð #k2
n1 � #k2

n2Þð #k
2
n1 � #k2

n3Þð #k
2
n1 � #k2

n4Þ #kn1

; ð18aÞ
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Rn2 ¼
�jena2ðL11L22 � L12L21Þn2

2pDð1 � nÞð1 þ 3b2Þð1 � b2Þð #k2
n2 � #k2

n1Þð #k
2
n2 � #k2

n3Þð #k
2
n2 � #k2

n4Þ #kn2

; ð18bÞ

Rn3 ¼
�jena2ðL11L22 � L12L21Þn3

2pDð1 � nÞð1 þ 3b2Þð1 � b2Þð #k2
n3 � #k2

n1Þð #k
2
n3 � #k2

n2Þð #k
2
n3 � #k2

n4Þ #kn3

; ð18cÞ

Rn4 ¼
�jena2ðL11L22 � L12L21Þn4

2pDð1 � nÞð1 þ 3b2Þð1 � b2Þð #k2
n4 � #k2

n1Þð #k
2
n4 � #k2

n2Þð #k
2
n4 � #k2

n3Þ #kn4

: ð18dÞ

The corresponding negative-going waves are equal to the positive-going waves because of
symmetry. For the n ¼ 0 mode, R02 ¼ 0 because it is a torsional wave and is not excited by a
radial force due to symmetry [17]. The mobility is found by summing the wave receptances and
differentiating with respect to time to give

Ynðs; yÞ ¼ �jo
X4

b¼1

Rnb cos nðy� fÞ½ �ej #knbs: ð19Þ
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Fig. 4. Wave mobility of the modes n ¼ 023 of the infinite pipe.

M.J. Brennan, W. Variyart / Journal of Sound and Vibration 260 (2003) 329–348336



In Fig. 4, the individual wave mobilities for circumferential modes n ¼ 0; 1, 2, and 3 for an
undamped pipe are plotted against non-dimensional frequencies from 0.0012 to 0.8, which
corresponds to the frequency range 10–6.7 kHz for the pipe data given in Table 1. It can be seen
for the n ¼ 0 mode that the standing nearfield waves, b ¼ 3 and 4, dominate the response of the
pipe at the excitation point. However, these waves decay away rapidly from the source. In the far
field, therefore, where the amplitude of the evanescent wave generated by the point force is
negligible, only the longitudinal wave, b ¼ 1; contributes significantly to the radial motion of the
n ¼ 0 mode (the torsional wave amplitude b ¼ 2 is equal to zero). It should be noted that the scale
of the vertical axis for this mode is different from that for the other modes as the radial amplitude
is much smaller.

For the n ¼ 1 mode, the propagating (b ¼ 1) and the nearfield (b ¼ 2) waves dominate the
response of the infinite pipe, especially at low frequencies. The effect of the standing nearfield
waves, b ¼ 3 and 4, increases with increasing frequency. For the n ¼ 2 mode, before the waves cut
on, all waves are standing nearfield waves. These waves can be separated into two groups, which
have small (b ¼ 1 and 2) and large (b ¼ 3 and 4) wavenumbers as shown by Variyart and Brennan
[13]. After the waves cut on, the standing nearfield waves with small wavenumbers disappear and
the flexural (b ¼ 1) wave starts to propagate. Both b ¼ 1 and 2 waves dominate the pipe motion.
Like the n ¼ 1 mode, the standing nearfield waves influence the response of the n ¼ 2 mode at
high frequencies. The dynamic behaviour of the n ¼ 3 mode is similar to that of the n ¼ 2 mode
except it has a higher cut-on frequency.

3. Approximate low-frequency mobilities

The expressions for the wave receptances derived in the previous section can be simplified by
making approximations at low frequencies. When O51; #kn1 and #kn2 are much smaller than #kn3

and #kn4; which are the standing nearfield wavenumbers, and can be ignored [13]. Also neglecting
b2 in comparison with unity, the wave receptances obtained given in Eq. (18) become

Rn1 ¼
�jena2ðL11L22 � L12L21Þn1

2pDð1 � nÞ #kn1
#k2
n3
#k2
n4ð #k

2
n1 � k2

n2Þ
; ð20aÞ

Rn2 ¼
�jena2ðL11L22 � L12L21Þn2

2pDð1 � nÞ #kn2
#k2
n3
#k2
n4ð #k

2
n2 � #k2

n1Þ
; ð20bÞ

Table 1

Properties of a PVC pipe

E (N/m2) r (kg/m3) n a (mm) h (mm) Z

3.974	 109 1460 0.33 33.2 2.2 0.035

M.J. Brennan, W. Variyart / Journal of Sound and Vibration 260 (2003) 329–348 337



Rn3 ¼
�jena2ðL11L22 � L12L21Þn3

2pDð1 � nÞ #k5
n3ð #k

2
n3 � #k2

n4Þ
; ð20cÞ

Rn4 ¼
�jena2F0ðL11L22 � L12L21Þn4

2pDð1 � nÞ #k5
n4ð

#k2
n4 �

#k2
n3Þ

: ð20dÞ

3.1. n ¼ 0 mode

Because of its distinguishable behaviour, the n ¼ 0 mode is considered separately from the nX1
modes. The standing nearfield waves dominate the response of the pipe at the excitation point and
only the longitudinal propagating wave dominates the response in the far field, where the
amplitudes of the evanescent waves generated by the point force are negligible. Hence, the point
mobility of the n ¼ 0 mode of an infinite pipe can be approximated by the combination of both
standing nearfield waves and the transfer mobility in the far field approximated by the
longitudinal propagating wave.

To simplify the mobility of the n ¼ 0 mode at low frequencies the approximate wavenumbers
given in Appendix A are used. In the positive direction they are given by

#k01 ¼ � #kl ; ð21aÞ

#k02 ¼ � #ks; ð21bÞ

#k03 ¼
ð1 � n2Þð1 � #k2

l Þ

4b2

" #1=4

ðþ1 þ jÞ ð21cÞ

#k04 ¼
ð1 � n2Þð1 � #k2

l Þ

4b2

" #1=4

ð�1 þ jÞ ð21dÞ

where #kl and #ks are the non-dimensional longitudinal and torsional wavenumbers respectively.
Substituting for ðL11L22 � L12L21Þ0b ¼ ð #k2

0b � O2Þ 1
2
ð1 � nÞð1 þ 3b2Þ #k2

0b � O2
h i

together with the
bending stiffness, D ¼ Eh3=12ð1 � n2Þ; and wavenumbers into Eq. (20a) yields the expression for
the R01 wave:

R01 ¼
jn2 #kl

4pKð1 � n2Þð1 � #k2
l Þ
: ð22aÞ

In addition to the assumption of a very small longitudinal wave amplitude at low frequencies, for
the standing nearfield waves, #k2

03;
#k2
04bO2 can also be assumed. Hence, the standing nearfield

waves become

R03 ¼
�j

8pb2K #k3
03

; ð22bÞ

R04 ¼
�j

8pb2K #k3
04

: ð22cÞ
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As mentioned in the previous section, the wave receptance of the torsional wave, R02; is zero for
the n ¼ 0 mode. By combining the wave mobilities the mobility of the n ¼ 0 is found to be

Y0ðs; yÞ ¼ �jo½R01e
j #k01s þ R03e

j #k03s þ R04e
j #k04s�: ð23Þ

Because the standing nearfield waves dominate the motion of the infinite pipe at the excitation
point, the approximate point mobility is given by

Y P
0 ¼ �joðR03 þ R04Þ ¼ �

ð1 þ jÞo

8pb2K #k3
03

: ð24Þ

The approximate transfer mobility in the far field is dominated by the longitudinal propagating
wave and is thus given by

Y T
0 ðs; yÞ ¼ �joR01 ¼

on2 #kl

4pKð1 � n2Þð1 � #k2
l Þ

e�j #kls: ð25Þ

3.2. nX1 modes

The standing nearfield wave receptances for the nX1 modes are much smaller than the
propagating and nearfield waves at low frequencies. Therefore, the point mobility is dominated by
the propagating and nearfield waves. In the far field, however, the mobility is dominated by the
propagating wave. To simplify these mobility expressions for low frequencies it is assumed that
b2
51 and #k2

nbbO2: The latter assumption is because the propagating wavenumber rapidly
increases after the wave cuts on. Applying these assumptions gives ðL11L22 � L12L21ÞnbD

1
2

ð1 � nÞðn2 þ #k2
nbÞ

2 which is substituted into Eq. (20a) and (20b) to give

Rn1 ¼
�ja2ðn2 þ #k2

n1Þ
2

2pD #kn1
#k2
n3
#k2
n4ð

#k2
n1 �

#k2
n2Þ

; ð26aÞ

Rn2 ¼
�ja2ðn2 þ #k2

n2Þ
2

2pD #kn2
#k2
n3
#k2
n4ð #k

2
n2 � #k2

n1Þ
: ð26bÞ

The expression for the mobility then becomes

Ynðs; yÞ ¼ �jo cos½nðy� fÞ�½Rn1e
j #kn1s þ Rn2e

j #kn2s�: ð27Þ

This yields the point mobility

Y P
n ¼ �joðRn1 þ Rn2Þ ¼ �

a2

2pD #k2
n3
#k2
n4ð #k

2
n1 � #k2

n2Þ

ðn2 þ #k2
n1Þ

2

#kn1

�
ðn2 þ #k2

n2Þ
2

#kn2

" #
ð28Þ

and the transfer mobility in the far field

Y T
n ðs; yÞ ¼ �joRn1 ¼ �

a2ðn2 þ #k2
n1Þ

2

2pD #kn1
#k2
n3
#k2
n4ð #k

2
n1 � #k2

n2Þ
cos½nðy� fÞ�ej #knbs: ð29Þ

In the case of the n ¼ 1 mode, the flexural ( #k11) and nearfield ( #k12) wavenumbers, are similar to
those of a Timoshenko beam given in Appendix A, which results in the following wave
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receptances:

R11 ¼ �
jð1 þ #k2

11Þ

4phE #k2
b
#k11

ð30aÞ

R12 ¼
jð1 þ #k2

12Þ

4phE #k2
b
#k12

; ð30bÞ

where #kb is the non-dimensional Euler–Bernoulli bending wavenumber. Substituting for the wave
amplitudes from Eq. (30) into Eq. (27) gives the approximate mobility of this mode. When O2

51
and #k2

bb
#k4
b;

#k2
l ;

#k2
s ; the flexural and nearfield wavenumbers can be approximated as #k11 ¼ � #kb and

#k12 ¼ j #kb: Using these approximations and setting #k2
b51 so that #k4

b can be neglected, the flexural
and nearfield waves become

R11 ¼
jð1 þ 2 #k2

bÞ

4phE #k3
b

; ð31aÞ

R12 ¼
ð1 � 2 #k2

bÞ

4phE #k3
b

: ð31bÞ

Thus, the point mobility for the n ¼ 1 mode is given by

Y P
1 ¼

o½ð1 � jÞ þ 2 #k2
bð1 þ jÞ�

4phE #k3
b

ð32Þ

and the transfer mobility for this mode is given by

Y T
1 ðs; yÞ ¼

oð1 þ 2 #k2
bÞ

4phE #k3
b

cos½nðy� fÞ�ej #kbs ð33Þ

At very low frequencies, the flexural wavenumber tends to zero, which means that the term
containing #k2

b in the numerator of Eqs. (32) and (33) can be neglected and the mobility of the
n ¼ 1 mode becomes that of an Euler–Bernoulli beam.

3.3. Evaluation of the simplified mobilities

The low-frequency point and transfer mobilities are validated by comparing them with the
mobilities calculated using the original model given in Eq. (19). Figs. 5 and 6 depict the point and
transfer mobilities for the first four circumferential modes respectively. To ensure that the
evanescent wave is sufficiently small in the far field, the transfer mobility is calculated at the non-
dimensional distance s ¼ 100: It should be noted that the scale for the n ¼ 0 mode in Fig. 6 is
larger than for the other modes.

From Figs. 5 and 6, it can be seen that, in general, the approximations give reasonably good
results up to quite high frequencies. The simplification of the mobility expressions depends on
there only being a small contribution to the radial motion from the waves that are neglected. It is
clear that the mobility of the n ¼ 1 mode simplifies to a Timoshenko beam-like model over a wide
frequency range, but the Euler–Bernoulli beam-like model is only valid at relatively low
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frequencies where the flexural and nearfield waves dominate. Table 2 gives a summary of the
approximate mobility formulae derived.

4. Experimental validation

To validate the transfer mobility expressions derived in the previous sections some experimental
work was carried out. The experimental set-up is shown in Fig. 7. A 4.6m long PVC pipe, whose
properties are given in Table 1, was suspended by cords and fitted with anechoic terminations at
both free ends in order to make the pipe behave as if it had infinite length. These terminations
were wooden boxes containing sand. A random signal from an HP 3566A Signal Analyzer was
supplied to the shaker, onto which a PZT element was attached with the sensitivity of 341.7 pC/N,
for use as a force gauge. A PZT element was used as the force sensor because it is very light and
inexpensive. The pipe was excited at its mid-point and a set of 32 measurements around the pipe
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Fig. 5. Point mobility of the n ¼ 023 modes of an infinite pipe, , analytical method (Eq. (19)); y, simplification at

low frequencies (Eq. (24) for the n ¼ 0 mode, Eq. (32) for the n ¼ 1 mode modelled as a Timoshenko beam, and

Eq. (28) for the nX2 modes).
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with equal angle were made at a distance of 300mm from the shaker using a Bruel & Kjaer
accelerometer type 4374, which had a mass of 0.65 g. A distance of 300mm was chosen so that the
radial acceleration of the pipe comprised all wave types. Using the modal decomposition
technique described in Appendix B, the responses of each mode were extracted from the measured
frequency response functions. All measured frequency response functions were accelerance, which
were converted to mobility by dividing by jo: These are compared with the predictions in Fig. 8.
Measured and predicted mobilities of the pipe are also compared for various azimuthal angles. To
make the comparison with the experimental results the complex elastic modulus of the pipe,
E0 ¼ Eð1 þ jZÞ where Z is the loss factor, was used in the predictions because of structural
damping in the pipe. Before this comparison could be done, however, the reference angle (f) of
the pipe had to be determined, and the way in which this was obtained is described in Appendix B.

In Fig. 8(a), it can be seen that the mobility of the n ¼ 0 mode calculated using Eq. (23) is very
small, especially at low frequencies. It was difficult to detect this mode using accelerometers
because of a poor signal-to-noise ratio leading to an inaccurate result. Another way to detect this
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Fig. 6. Transfer mobility of the n ¼ 023 modes of an infinite pipe, which is calculated at the distance of s ¼ 100; ,

analytical method (Eq. (19)); y, simplification at low frequencies (Eq. (25) for the n ¼ 0 mode, Eq. (33) for the n ¼ 1

mode modelled as a Timoshenko beam, and Eq. (29) for the n X2 modes).
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mode is to use PVDF wire, which senses strain proportional to the radial displacement of the pipe
[10,18]. There is good agreement between the prediction of the n ¼ 1 mode modelled as a
Timoshenko beam (Eq. (30)) and the experimental result as shown in Fig. 8(b). Fig. 8(c) and (d)
show the consistency between the practice and the theory (Eq. (27) for n ¼ 2 and n ¼ 3 modes.

In all of the graphs, however, the effects of the higher modes are evident, especially at their cut-
on frequencies. This might have been caused by inaccurate positioning of the accelerometers
around the pipe or possibly large reflections from the anechoic terminations at the cut-on
frequencies of the higher modes.

The reference angle, f; of the acceleration measurement with respect to the force position is
illustrated in Fig. 9. This angle is constant for all modes, and should be calculated in the frequency

Table 2

Summary of the approximate mobility of an infinite pipe

Mode Mobility

Point Transfer

0

�
ð1 þ jÞo

8pb2K #k3
03

ov2 #k1

4pKð1 � v2Þð1 � #k2
1Þ

1
o½ð1 � jÞ þ 2 #k2

bð1 þ jÞ�

4phE #k3
b

oð1 þ 2 #k2
bÞ

4phE #k3
b

X2

�
a2

2pD #k2
n3
#k2
n4ð #k

2
n1 � #k2

n2Þ

ðn2 þ #k2
n1Þ

2

#kn1

�
ðn2 þ #k2

n2Þ
2

#kn2

" #
�

a2ðn2 þ #k2
n1Þ

2

2pD #kn1
#k2
n3
#k2
n4ð #k

2
n1 � #k2

n2Þ

Piezo-
element

Shaker

l = 300 mm

HP  Analyzer

Amplifier

Conditioning
Amplifier

Accelerometer

Anechoic
Termination

Anechoic
Termination

Fig. 7. Experimental set-up for the infinite pipe.
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range where a mode has cut on but before higher modes have cut on, to improve the signal-to-
noise ratio. Once the reference angle of the pipe had been determined, the mobility obtained from
the experimental results could be compared with the predictions combining Eq. (23) for the n ¼ 0;
Eq. (33) for the n ¼ 1 and Eq. (29) for the nX2 modes. They are in good agreement up to high
frequencies as shown in Fig. 10 for various measurement angles.

5. Conclusions

Expressions for the mobility of an infinite in vacuo pipe have been derived. This has been
achieved by finding expressions for the receptances for the four wave types that can exist for each
circumferential mode. These are then summed to give the modal mobilities, which can then be
summed to give the total pipe mobility. In addition, simplified approximate low-frequency
expressions for the point and transfer mobilities have also been derived by making assumptions
about the wavenumbers and the contributions of various wave types at low frequencies. It has
been shown that the simplified expressions are valid up to quite high frequencies provided that the
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Fig. 10. Amplitude of mobility of the pipe at various angle of measurements where f ¼ �5: , measured result; – –

prediction, which combines Eqs. (23), (29) and (33).
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pipe is modelled as a Timoshenko beam for the n ¼ 1 mode. The new mobility expressions have
been validated by experimental work.

Appendix A. Simplified wavenumbers

This appendix summarizes the simplified low-frequency wavenumbers reported by Variyart and
Brennan [13]. They are used in the approximation of the mobilities in Section 3 and are as follows.

For the n ¼ 0 mode,

#k2
01 ¼ #k2

l ;
#k2
02 ¼ #k2

s ;
#k2
03;

#k2
04 ¼ 7j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � n2Þð1 � #k2

l Þ=b
2

q
: ðA:1Þ

For the n ¼ 1 mode,

#k2
11;

#k2
12 ¼

1

2ð1 � #k2
l Þ
½ð1 � #k2

l Þð #k
2

l þ #k2
s Þ þ #k4

b72 #k2
b� #k2

13;
#k2
14 ¼ 7j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � n2Þð1 � #k2

l Þ=b
2

q
: ðA:2Þ

For the nX2 modes

#k2
n1 ¼

n2½ðO2 � 2O2
coÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � n2 þ 3O2

coÞðO
2 � O2

coÞ þ O4
co

q
�

b2 #k2
n3
#k2
n4

;

#k2
n2 ¼

n2½ðO2 � 2O2
coÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � n2 þ 3O2

coÞðO
2 � O2

coÞ þ O4
co

q
�

1 � n2 � O2 þ 6O2
co

;

#k2
n3;n4 ¼ �n2 þ

1

6
� 3z1=3 �

ð1 � n2 � O2Þ

b2z1=3

� �
7j

ffiffiffi
3

p
3z1=3 þ

ð1 � n2 � O2Þ

b2z1=3

� �� �
; ðA:3Þ

where

z ¼
1 � n2

b2

� �
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

ð1 � n2 � O2Þ3

27ð1 � n2Þ2b2n4

s" #
n2; O2

co ¼
b2n2ðn2 � 1Þ2

n2 þ 1

is the cut-on frequency, #k2
l ¼ O2=1 � n2; #k2

s ¼ 2O2=1 � n; and #k4
b ¼ 2O2=ð1 þ 3b2Þð1 � n2ÞD2 #k2

l are
the non-dimensional wavenumbers of longitudinal, torsional and flexural bending waves of a pipe
normalized to its radius. As discussed by Variyart and Brennan [13], the flexural ( #k11) and
nearfield ( #k12) wavenumbers of the n ¼ 1 mode (Eq. (A.2)) are similar to those of the Timoshenko
beam.

Appendix B. Modal decomposition

A point sensor such as an accelerometer placed on a pipe wall will detect all circumferential
modes. To be able to detect a single mode, modal decomposition of measurements from an array
of sensors is required. This technique is based on the principle of discrete orthogonality [11]. To
illustrate this technique, Eq. (19) is considered. By expanding the term cos½nðy� fÞ� into sine and
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cosine functions, this equation is written as

Yn ¼ �jo½l1 cosðnyÞ þ l2 sinðnyÞ�
X4

b¼1

Rnbe
j #knbs; ðB:1Þ

where Rnb is given in Eq. (18), l1 ¼ cosðnfÞ; l2 ¼ sinðnfÞ and f is the reference angle. Since the
term on the right-hand side of this equation consists of two separate parameters, y and s; the total
mobility may be written as

Y ¼
XN
n¼0

enAn½l1 cosðnyÞ þ l2 sinðnyÞ�; ðB:2Þ

where An ¼ �jo=en

P4
b¼1 Rnbe

j #knbs: Assuming that the measurement is made using a point sensor
at N points around a pipe with equal angle, then, y ¼ ð2p=NÞpy; where py is the position of the
measurement. To decompose pipe modes in terms of the cosine function, both sides of Eq. (B.2)
are multiplied by ð1=NÞcosðð2ppy=NÞmÞ and all responses measured around the pipe are summed
to give

1

N

XN�1

p¼0

Y cos
2ppy

N
m

� �

¼
1

N

XN�1

p¼0

XN
n¼0

enAn l1 cos
2ppy

N
n

� �
þ l2 sin

2ppy

N
n

� �� �
cos

2ppy

N
m

� �
; ðB:3Þ

where m is the desired mode to be decomposed. Using the property of orthogonality, the response
of the desired mode for the cosine function can be determined as

Y c
n ¼

1

N

XN�1

p¼0

Y cos
2ppy

N
n

� �
¼ l1An; m ¼ n: ðB:4Þ

The term of Y c
n is denoted for the measured mobility of the nth mode decomposed with the cosine

function. To decompose pipe modes in terms of the sine function, the same procedure is applied
except that both sides are multiplied by ð1=NÞsinðð2ppy=NÞmÞ instead of ð1=NÞcosðð2ppy=NÞmÞ:
Hence, the response of the desired mode for the sine function is

Y s
n ¼

1

N

XN�1

p¼0

Y sin
2ppy

N
n

� �
¼ l2An; m ¼ n ðB:5Þ

where the term of Y s
n is denoted for the measured mobility of the nth mode decomposed with the

sine function. The total response, An; of the desire mode can be obtained by combining Eqs. (B.4)
and (B.5) as follows to give

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY c

n Þ
2 þ ðY s

nÞ
2

q
ðB:6Þ

and the reference angle is obtained from

f ¼
1

n
tan�1 l2

l1

� �
¼

1

n
tan�1 Y s

n

Y c
n

� �
: ðB:7Þ
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